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Observations

1. SSL algorithms are optimized to prevent global dimensional collapse.

2. Classes of same hierarchy can share features which collapses locally.
3. Hierarchies emerge naturally during training of SSL algorithm.

HEX Intuition

Local hierarchies emerge. Can we exploit this behavior?
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Analysis of Hierarchical Representations

Effective Rank vs Epochs of Training for Sample Subsets
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Qy; = weighting function

T = Temperature

z, = embedding of negatives

Results

z, = embedding of regular negatives
z, = embedding of hierarchy negatives H(i) = Set of Hierarchy Negatives

HEX can be applied to both Sample Contrastive and Dimension Contrastive Strategies
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ImageNet
ImageNet Semi-
g Supervised
(1%)
57.74% 29.61%
59.03% 33.72%
62.47% 39.94%
65.96% 46.00%

 We propose a self-supervised methodology based on cosine similarity distributions to identify the existence of local hierarchical
groupings of images within the representation space.

 We introduce a local hierarchical regularization into the training process for both sample and dimension contrastive strategies.

* We introduce an & threshold term during the training process that can be tuned adaptively or manually to reflect the growing hierarchical
organization of the representation space.
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